FPGA学习笔记

  • starysoul
  • LV4工程师
  • |      2015-11-24 21:48:39
  • 浏览量 481
  • 回复:1

一位孜孜不倦求学者的攀登之路FPGA学习笔记(同学发来的笔记文档)



关于约束,时序分析的问题汇总

关于约束、时序分析的问题,比如:如何设置setuphold时间?如何使用全局时钟和第二全局时钟(长线资源)?如何进行分组约束?如何约束某部分组合逻辑?如何通过约束保证异步时钟域之间的数据交换可靠?如何使用I/O逻辑单元内部的寄存器资源?如何进行物理区域约束,完成物理综合和物理实现?等等。。。

 

约束的作用?
有些人不知道何时该添加约束,何时不需要添加?有些人认为低速设计不需要时序约束?关于这些问题,希望下面关于约束作用的论述能够有所帮助!
附加约束的基本作用有3
(1)提高设计的工作频率
对很多数字电路设计来说,提高工作频率非常重要,因为高工作频率意味着高处理能力。通过附加约束可以控制逻辑的综合、映射、布局和布线,以减小逻辑和布线延时,从而提高工作频率。
(2)获得正确的时序分析报告
几乎所有的FPGA设计平台都包含静态时序分析工具,利用这类工具可以获得映射或布局布线后的时序分析报告,从而对设计的性能做出评估。静态时序分析工具以约束作为判断时序是否满足设计要求的标准,因此要求设计者正确输入约束,以便静态时序分析工具输出正确的时序分析报告。
(3)指定FPGA/CPLD引脚位置与电气标准
FPGA/CPLD的可编程特性使电路板设计加工和FPGA/CPLD设计可以同时进行,而不必等FPGA/CPLD引脚位置完全确定,从而节省了系统开发时间。这样,电路板加工完成后,设计者要根据电路板的走线对FPGA/CPLD加上引脚位置约束,使FPGA/CPLD与电路板正确连接。另外通过约束还可以指定IO引脚所支持的接口标准和其他电气特性。为了满足日新月异的通信发展,Xilinx新型FPGA/CPLD可以通过IO引脚约束设置支持诸如AGPBLVDSCTTGTLGTLPHSTLLDTLVCMOSLVDCILVDSLVPECLLVDSEXTLVTTLPCIPCIXSSTLULVDS等丰富的IO接口标准。
另外通过区域约束还能在FPGA上规划各个模块的实现区域,通过物理布局布线约束,完成模块化设计等。

 

时序约束的概念和基本策略
时序约束主要包括周期约束(FFSFFS,即触发器到触发器)和偏移约束(IPADFFSFFSOPAD)以及静态路径约束(IPADOPAD)等3种。通过附加约束条件可以使综合布线工具调整映射和布局布线过程,使设计达到时序要求。例如用OFFSET_IN_BEFORE约束可以告诉综合布线工具输入信号在时钟之前什么时候准备好,综合布线工具就可以根据这个约束调整与IPAD相连的Logic Circuitry的综合实现过程,使结果满足FFS的建立时间要求。
附加时序约束的一般策略是先附加全局约束,然后对快速和慢速例外路径附加专门约束。附加全局约束时,首先定义设计的所有时钟,对各时钟域内的同步元件进行分组,对分组附加周期约束,然后对FPGA/CPLD输入输出PAD附加偏移约束、对全组合逻辑的PAD TO PAD路径附加约束。附加专门约束时,首先约束分组之间的路径,然后约束快、慢速例外路径和多周期路径,以及其他特殊路径。

 

周期(PERIOD)的含义
周期的含义是时序中最简单也是最重要的含义,其它很多时序概念会因为软件商不同略有差异,而周期的概念确是最通用的,周期的概念是FPGA/ASIC时序定义的基础概念。后面要讲到的其它时序约束都是建立在周期约束的基础上的,很多其它时序公式,可以用周期公式推导。
周期约束是一个基本时序和综合约束,它附加在时钟网线上,时序分析工具根据PERIOD约束检查时钟域内所有同步元件的时序是否满足要求。PERIOD约束会自动处理寄存器时钟端的反相问题,如果相邻同步元件时钟相位相反,那么它们之间的延迟将被默认限制为PERIOD约束值的一半。
如下图所示,时钟的最小周期为:
TCLK = TCKO +TLOGIC +TNET +TSETUP TCLK_SKEW
TCLK_SKEW =TCD2 TCD1
其中TCKO为时钟输出时间,TLOGIC为同步元件之间的组合逻辑延迟,TNET为网线延迟,TSETUP为同步元件的建立时间,TCLK_SKEW为时钟信号延迟的差别。

 


数据和时钟之间的约束:OFFSETSETUPHOLD时间。
为了确保芯片数据采样可靠和下级芯片之间正确的交换数据,需要约束外部时钟和数据输入输出引脚之间的时序关系(或者内部时钟和外部输入/输出数据之间的关系,这仅仅是从采用了不同的参照系罢了)。约束的内容为告诉综合器、布线器输入数据到达的时刻,或者输出数据稳定的时刻,从而保证与下一级电路的时序关系。
这种时序约束在Xilinx中用Setup to Clockedge),Clockedge) to hold等表示。在Altera里常用tsu (Input Setup Times)th (Input Hold Times)tco (Clock to Out Delays)来表示。很多其它时序工具直接用setuphold表示。其实他们所要描述的是同一个问题,仅仅是时间节点的定义上略有不同。

 

Xilinx"输入到达时间的计算"时序描述如图所示:
定义的含义是输入数据在有效时钟沿之后的TARRIVAL时刻到达。则,
TARRIVAL=TCKO+TOUTPUT+TLOGIC     公式1
根据周期(Period)公式,我们可以得到:
Tcko+Toutput+Tlogic+Tinput+Tsetup-Tclk_skew=Tclk; 公式2
将公式1代入公式2
Tarrival+Tinput+Tsetup-Tclk_skew=Tclk, Tclk_skew满足时序关系后为负,所以
TARRIVAL +TINPUT+TSETUP 公式3
这就是Tarrival应该满足的时序关系。其中TINPUT为输入端的组合逻辑、网线和PAD的延迟之和,TSETUP为输入同步元件的建立时间。

 数据延时和数据到达时间的关系:

TDELAY为要求的芯片内部输入延迟,其最大值TDELAY_MAX与输入数据到达时间TARRIVAL的关系如图2所示。也就是说:
TDELAY_MAX+TARRIVAL=TPERIOD 公式4
所以:
TDELAYTARRIVAL

 要求输出的稳定时间
从下一级输入端的延迟可以计算出当前设计输出的数据必须在何时稳定下来,根据这个数据对设计输出端的逻辑布线进行约束,以满足下一级的建立时间要求,保证下一级采样的数据是稳定的。
计算要求的输出稳定时间如图所示。
公式的推导如下:
定义:TSTABLE = TLOGIC +TINPUT +TSETUP
从前面介绍的周期(Period)公式,可以得到(其中TCLK_SKEWTCLK1TCLK2)
TCLKTCKOTOUTPUT+TLOGIC+TINPUT+TSETUP+TCLK_SKEW
TSTABLE的定义代入到周期公式,可以得到:
TCLK=TCKO+TOUTPUT+TSTABLE+TCLK_SKEW
所以,
TCKO +TOUTPUT+TSTABLE
这个公式就是TSTABLE必须要满足的基本时序关系,即本级的输出应该保持怎么样的稳定状态,才能保证下级芯片的采样稳定。有时我们也称这个约束关系是输出数据的保持时间的时序约束关系。只要满足上述关系,当前芯片输出端的数据比时钟上升沿提早TSTABLE 时间稳定下来,下一级就可以正确地采样数据。
其中TOUTPUT为设计中连接同步元件输出端的组合逻辑、网线和PAD的延迟之和,TCKO为同步元件时钟输出时间。
/*******************************************************************/
这里的概念介绍比较繁复,但是如果想掌握数据与时钟关系的基本约束,就必须搞清楚这些概念,下一帖介绍这些概念的具体应用,实施上述约束的方法和具体命令。

Altera对应的时序概念

第一个时序概念是周期,Period,这个概念是FPGA/ASIC通用的一个概念,各方的定义相当统一,至多是描述方式不同罢了,所有的FPGA设计都首先要进行周期约束,这样做的好处除了在综合与布局布线时给出规定目标外,还能让时序分析工具考察整个设计的Fmax等。
Altera的周期定义如图所示,公式描述如下:
Clock Period = Clk-to-out + Data Delay + Setup Time - Clk Skew
即,
Tclk         = Tco        + B          + Tsu        -(E-C)
Fmax         = 1/Tclk
对比一下前面的介绍,只要理解了B包含了两级寄存器之间的所有logicnet的延时就会发现与前面公式完全一致。
一个设计的Fmax在时序报告,或者在图形界面观察。以Quartus2为例,在图形界面的观察方法是,编译实现完成后,展开Compilation Report下面的Timing Analyses,单击Fmaxnot include delays to / from pins)即可。在详细报告窗口可以观察到影响周期恶化的10条最差时序路径,根据这些信息可以找出关键路径,进行时序分析。
关于时序分析和关键路径改进等内容在后面的帖子会有专门的讨论,暂时不做进一步介绍。


Clock Setup Time (tsu)
要想正确采样数据,就必须使数据和使能信号在有效时钟沿到达前就准备好,所谓时钟建立时间就是指时钟到达前,数据和使能已经准备好的最小时间间隔。如图1所示:
注:这里定义Setup时间是站在同步时序整个路径上的,需要区别的是另一个概念Micro tsuMicro tsu指的是一个触发器内部的建立时间,它是触发器的固有属性,一般典型值小于1~2ns。在Xilinx等的时序概念中,称AlteraMicro tsusetup时间,用Tsetup表示,请大家区分一下。
回到Altera的时序概念,Alteratsu定义如下:
tsu = Data Delay – Clock Delay + Micro tsu

Clock Skew指一个同源时钟到达两个不同的寄存器时钟端的时间偏移


  • 0
  • 收藏
  • 举报
  • 分享
我来回复

登录后可评论,请 登录注册

所有回答 数量:1
滋补烩面 2015-11-25
怎么一样啊
0   回复
举报
发布
x
收藏成功!点击 我的收藏 查看收藏的全部帖子