高速高密度PCB设计的关键技术与进展

  • 悠然南山
  • LV3工程师
  • |      2014-01-22 17:18:42
  • 浏览量 690
  • 回复:5

高速高密度已逐步成为许多现代电子产品的显著发展趋势之一,高速高密度PCB设计技术即成为一个重要的研究领域。

  与传统的PCB设计相比,高速高密度PCB设计有若干关键技术问题,需要开发新的设计技术,有很多理论问题和技术问题尚待深入研究。同时,对高速高密度PCB要求越来越高,使高速高密度PCB设计不断面临新的问题;大量相关研究成果的不断出现,推动高速高密度PCB设计技术不断发展。本文介绍高速高密度PCB设计的关键技术问题(信号完整性电源完整性、EMC /EM I和热分析)和相关EDA技术的新进展,讨论高速高密度PCB设计的几种重要趋势。

  关键技术问题

  高速高密度PCB设计的关键技术问题主要有信号完整性( signal integrity, SI) 、电源完整性(power integrity, P I) 、EMC /EM I和热分析。

  信号完整性

  信号完整性主要指信号在信号线上传输的质量1当电路信号能以要求的时序( timing) 、持续时间和电压幅值到达接收芯片的引脚时,该电路就有好的信号完整性。当信号不能正常响应或信号质量不能使系统长期稳定工作时,就

出现了信号完整性问题。信号完整性问题主要表现为:延迟、反射、过冲、振铃、串扰、时序、同步切换噪声、EM I等。

  信号完整性问题将直接导致信号失真、时序错误,以及产生错误的数据、地址和控制信号,从而造成系统出错甚至瘫痪。通常,对数字芯片而言,高于V IH的电平是逻辑1,低于V IL的电平是逻辑0,在VIL ~VIH之间的电平是不确定状态。对于有振铃的数字信号,当振荡电平进入VIL ~VIH的不确定区时,就可能引起逻辑错误。数字信号的传输必须有正确的时序。一般的数字芯片都要求数据必须在时钟触发沿的tsetup前就要稳定,才能保证逻辑的时序正确。信号传输延迟的时间太长,则可能在时钟的上升沿或下降沿处接收不到正确的逻辑,从而引起时序错误。

  引起信号完整性问题的原因较复杂,元器件的参数、PCB的参数、元器件在PCB上的布局、高速信号的布线等都是影响信号完整性的重要因素。信号完整性是个系统问题,研究和解决信号完整性问题必须用系统的观点。

  相对而言,人们对信号完整性问题的研究经历了几十年,取得了很多重要的理论与技术成果,积累了丰富的经验。很多信号完整性技术已比较成熟,已得到广泛应用。

  电源完整性

  电源完整性主要指高速系统中,电源分配系统(powerdistribution system, PDS)在不同频率上,阻抗特性不同,使PCB上电源层与地层间的电压在电路板的各处不尽相同,从而造成供电不连续,产生电源噪声,使芯片不能正常工作。同时,由于高频辐射,电源完整性问题还会带来EMC /EM I问题。在高速度、低工作电压的电路中,电源噪声的危害尤为严重。

  电源完整性的提出,源于在不考虑电源的影响下基于布线和器件模型而进行信号完整性分析时所带来的巨大误差。

  相对而言,对电源完整性的研究起步较晚,理论研究和技术手段尚不够成熟,是目前高速高密度PCB设计最大的挑战之一。目前主要是采取一些通行的措施,在一定程度上,尽量减小由电源完整性问题带来的不利影响。所采取的主要措施,一是优化PCB的叠层、布局和布线设计;二是适当增加退耦电容。当系统频率小于300~400 MHz时,在适当的位置设置合适的电容,有助于减小电源完整性问题的影响。但是,当系统频率更高时,退耦电容的作用很小。在这种情况下,只有通过优化PCB设计来减小电源完整性问题的影响。

  • 0
  • 收藏
  • 举报
  • 分享
我来回复

登录后可评论,请 登录注册

所有回答 数量:1
冰山一角 2014-01-22
  南山哥
0   回复
举报
发布
x
收藏成功!点击 我的收藏 查看收藏的全部帖子